

BNL Role in ATLAS Computing

DOE Annual HEP Program Review

S. Rajagopalan

April 22, 2003

ATLAS Computing

Software

- Core Software
- Reconstruction & Simulation
- Analysis
 - Physics capabilities at the LHC
 - Preparation for Analysis
- Facility support
 - Local (U.S.) software support
 - BNL Tier 1 Center
 - Production (Simulation & Reconstruction)
 - Develop & deploy Grid Tools & Services

Background

Pre-1999 era:

- Geant3 based simulation
- Fortran based reconstruction software
- Physics Technical Design Report published in 1999
 - □ Detector & Physics Performance

❖ Post-1999 era:

- Work on Geant 4 based simulation
- Object Oriented Reconstruction software
 - □ Core Services, sub-system software & combined reconstruction
 - □ Adopted the LHCb framework as a starting point
 - □ The LAr Reconstruction was the first client of the new framework.
 - Considerable influence in core design aspects
- Data Challenges + Physics studies with the new software
 - □ Data Challenge 1 in progress

ATLAS Core Software Breakdown

- Framework
- ✓ Event Data Model
- ✓ Data Management
- Detector Description
- Graphics
- Analysis Tools
- Grid Integration

Areas where BNL plays a significant role

S. Rajagopalan

EDM Coordinator:

Raw Data Model Coordinator: H. Ma

LCG Applications Area Coordinator: T. Wenaus

Architecture-Team (A-Team): S. Rajagopalan, T. Wenaus

Event Data Model

- * Major contributions to EDM infrastructure from:
 - H. Ma, S. Rajagopalan
- **EDM** Infrastructure (StoreGate) provides tools for:
 - Memory management for Event Data Objects
 - On-demand access to objects from persistency
 - Persistable navigation between objects (Track → Hits)
 - History (how objects are created)
 - Efficient access to data in regions of interest
- ❖ ATLAS has baselined StoreGate as its choice of the EDM infrastructure.
 - High Level Trigger (HLT) will also use StoreGate.

Event Data Model Infrastructure (StoreGate)

Event Data Model (2)

- ❖ (H. Ma, S. Rajagopalan)
- **BNL** contribution to EDM software for physicists:
 - Design of the overall ATLAS Raw Data Flow
 - □ Implementation of the Calorimeter aspects
 - □ Emulation of ByteStream data flow and efficient unpacking and access in regions of interest
 - Used in High Level Trigger
 - □ Coordination of the Raw Data Flow across sub-sytems
 - Overall coordination of the ATLAS EDM effort
 - □ Design & implementation of Calorimeter EDM
 - □ Several aspects of the EDM for combined reconstruction

Persistency Support

- ❖ The baseline persistent technology for ATLAS changed from Objectivity to ROOT in 2001.
 - All LHC experiments have a common baseline.
 - BNL has significant expertise in this area (leveraging efforts from RHIC)
 - We immediately provided an interim ROOT based persistency mechanism for ATLAS that is being widely used in several applications.
 - Long term efforts are closely integrated with the LCG (LHC Computing & Grid project) to provide a common persistency solution.

The LCG Project

- ❖ To help the LHC experiments prepare, build and operate the computing environment needed to manage and analyze multi-PB scale data coming from each detector.
- ❖ Main working body of the LCG is the Project Execution Board (PEB) chaired by Les Robertson.
- **PEB** has four areas, each with a project manager:

✓ Applications (T. Wenaus)

Grid Technology

Fabrics

Grid Deployment

LCG Applications Area

- Identifies and provides solutions for common projects:
 - Long term advantages in providing resources, support and maintenance
- **❖** Identified Common Projects are:
 - ✓ Persistency Framework Project (POOL)
 - Physicist Interface Project (PI)
 - □ Interfaces and tools with which physicists will use the software
 - Core Libraries and Services Project (SEAL)
 - □ Core libraries, Object Dictionary, Scripting Services etc.
 - Software Process & Infrastructure Project (SPI)
 - □ Provides basic environment and tools for software development
 - Simulation Project
 - □ Support for Geant3, Geant4, Detector Description

Persistency Support (2)

- ❖ BNL current efforts are to integrate the ATLAS software with POOL to provide persistency support.
 - Its longer term include direct contributions to the POOL effort in the areas of Persistency Support and Event Collections
 - D. Adams, V. Fine, H. Ma, V. Perevotchikov
- * BNL is also providing MySQL based persistency for conditions data. (S. Kanadasamy, H. Ma, A. Undrus)
 - Currently in use by ATLAS (especially by Calorimeter)
 - While we may switch to a new conditions database, the technology independent interface to the algorithms will be stable.
- * Hong Ma: Overall Liquid Argon database coordinator
 - Oversees the needs of production, installation, online, offline and testbeam efforts in the LAr community.

Magda

- Distributed Data Manager for cataloging and data replication.
 - Developed by Wengsheng Deng (BNL).
- ❖ Heavily used in ATLAS Data Challenges (DC0 & DC1)
 - Catalog of ATLAS data at Alberta, CERN, Lyon, INFN (CNAF, Milan), FZK, IFIC, IHEP.su.itep.ru, NorduGrid, RAL and many US institutions.
 - 288K files in catalog with total size of 77.5 TB as of 2003-04-15
 - Main component in US testbed production
 - Data Replication task has transferred 10 TB between BNL HPSS and CERN Castor
- * Tested in EDG testbed and demonstrated to be useful.
- ❖ It will be implemented as a file catalog back end to the LCG POOL persistency framework.

Simulation, Reconstruction & Analysis

Geant3 Simulation

- P. Nevski serves as the ATLAS Geant3 simulation coordinator.
 - Data Challenge 0 & 1 utilize Geant3 based simulation.
 - Recent work geared toward implementing updated geometry.
 - Geant4 based simulation expected to be used for DC2 (April 2004)
 - □ Expect continued maintenance and support of Geant3 for ~ 2 years.
 - Until G4 has been validated.

Liquid Argon Software Organization

Current efforts focussed on delivering the needed software for Data Challenge 2 & Combined Testbeam run: Spring 2004

Liquid Argon Reconstruction

- Significant contributions in the Liquid Argon sub-system:
 - (H. Ma, F. Paige, S. Rajagopalan, K. Yip)
 - Responsible for deployment of the full sequence of steps, developing algorithms and associated EDM:
 - □ Digitization & ROD Emulation
 - □ Cell, Tower and Cluster Reconstruction
 - Implementation and coordination of calibration/corrections
 - \Box Combined Reconstruction to identify ey, τ and Jet candidates
- ❖ Used our success in influencing the overall architectural design and the design of reconstruction software in other sub-systems.

Other Reconstruction Activities

- Muon Reconstruction (K. Assamagan, Y. Fisyak, D. Adams)
 - EDM and Data Converters for Muon Reconstruction
- * Combined Reconstruction Activities: (H. Ma, F. Paige, S. Rajagopalan)
 - e-gamma Reconstruction
 - □ Develop algorithms to identify egamma candidates
 - Tau reconstruction
 - Jet Reconstruction and Hadronic Calibration
 - Missing E_T Reconstruction
- Physics capabilities in the SUSY sector (F. Paige)
 - F. Paige serves as the co-coordinator of the ATLAS SUSY Group
 - GMSB & mSUGRA models have been explored
 - Easy to discover if it exists, challenge is to understand underlying model
 - Analysis being redone with full simulation + new software

Jet Calibration

- * ATLAS calorimeters non-compensating.
 - Hadronic showers less dense than EM: so weight cells more
 - H1 calibration (at cell level) produces improved linearity, jet and MissingET resolution compared to standard sampling calibration

Tau Reconstruction

- ❖ Important ingredient in SUSY models.
 - Must rely on hadronic decays; hence large QCD backgrouds.

Select narrow jets using many shape variables in likelihood function.

A cut on this likelihood function + imposing track requirements: Have achieved S/B \sim 3 at 35% efficiency for $P_T > 35$ GeV

Data corresponds to ~ 2 fb⁻¹ for a specific mSugra point

Software Support, Facilities, Production & Grid

Software Support

- ❖ A full time librarian (A. Undrus) to manage the ATLAS and associated software locally at BNL for U.S.
 - Evaluation of release tools and their subsequent deployment
- Alex is a member of the ATLAS software infrastructure team (SIT) representing U.S. ATLAS.
- **BNL** developed the nightly-build system that is now deployed at CERN.
 - Central tool in day to day work for software developers
 - Testing procedures developed and integrated in automated builds
 - System likely to be deployed in the LCG Application area as well.

LHC Computing Facilities Model

Tier 1 Center

- * BNL has been selected as the U.S. Tier 1 Facility
 - B. Gibbard (manager), R. Baker (deputy) + staff
 - Currently operational at ~ 1% of the required 2008 capacity
 - Total capacity ~20% of the Tier0 center at CERN
 - Five Tier 2 centers elsewhere in U.S., each with 20% of Tier1 capacity

	Tape Based	3 Center	Standalone
	Model	Disk Model	Disk Model
CPU (kSPECint95)	209	329	500
Disk (TBytes)	365	483	1000
Tape (PBytes)	2	2	2
Disk (GBytes/sec)	10	20	20
Tape (MBytes/sec)	1000	200	200
WAN (Mbit/sec)	4610	9115	9115
		1/3+1/6 of ESD on disk	Add other 2/3 of ESD
	ESD pass each month	ESD pass each day	

US ATLAS Regional Center (Tier 1) at BNL

ATLAS Data Challenges

- ❖ A series of Data Challenges with increasing complexity is planned in ATLAS.
- ❖ Goal is to help us prepare by exercising the computing infrastructure, the complete software and study the physics

DC0: $\sim 10^5$ events, December 2002

DC1: $\sim 10^7$ events, January – June 2003

DC2: $\sim 10^8$ events, Spring 2004

DC3: $\sim 5 \times 10^8$ events, 2005

DC4: $\sim 10^9$ events, 2006

- * BNL has played a vital role in the DC0 & DC1 production
 - P. Nevski (simulation), Y. Fisyak (Reconstruction) + ...

Tier 1 Utilization

- * BNL serves as one of the handful of primary data repositories.
 - Consequently a primary analysis site
- * DC1 Phase 2 underway, which includes:
 - Pile-up production, Reconstruction production

Grid Tools & Services

- This effort is largely a PPDG funded project:
 - MAGDA: (W. Deng)
 - □ Distributed manager for cataloging and data replication (W. Deng)
 - DIAL: (D. Adams)
 - □ Distributed Interactive Analysis of Large datasets (D. Adams)
 - GUMS: (T. Wlodek, D. Yu)
 - □ Grid User Management System
 - Virtual Organization user management
 - Site authentication & authorization software
 - Monitoring: (J. Smith, D. Yu)
 - □ Local Cluster Monitoring integrated into Grid Middleware
 - Grid oversight and liaison activities (R. Baker)

Conclusion

- *BNL is significantly contributing in several areas of ATLAS computing:
 - Major responsibilities both in ATLAS and U.S. ATLAS Computing
 - As a Tier 1 Center, BNL is the main node in U.S. Grid testbed
- * BNL is developing significant expertise in many areas of software:
 - In turn, this expertise allows us to rapidly start looking at physics
 - And play an important coordination role in U.S. ATLAS
- Our main problem: We are understaffed.
 - Lost Kin Yip, who was making significant contributions
 - Significant cuts in project funding as well

